Ye (Henry) Mao

Education

Imperial College London | PhD in Computer Vision and Machine Learning

2023 - Present

Supervisor: Prof Krystian Mikolajczyk Scholarship: President's PhD Scholarship.

Research Interests: 3D Understanding, Vision-Language Model, Open-Vocabulary Learning

University of Cambridge | MPhil in Artificial Intelligence and Medical Imaging

2022 - 2023

Supervisor: Prof Stephen Price

Research Interests: Diffusion Model, Image Super-Resolution, Cross-Modal Image Synthesis

Thesis: Super-Resolution of Real-World Brain MRI using Conditional Diffusion Probabilistic Models

Imperial College London | MSc in Applied Machine Learning

2021 - 2022

Top~1Overall Grade 81% | Top~1 Thesis Grade 87%

Thesis Supervisor: Dr Jesus Rodriguez-Manzano

<u>Thesis</u>: Domain Adaptation for Digital PCR Multiplexing

King's College London | BSc in Computer Science with Robotics

2018 - 2021

Top 1 Overall Grade 82% | Top 1 Thesis Grade 81%

Thesis Supervisor: Dr Grigorios Loukides

Thesis: String Sanitisation Algorithm Development

Selected Publications

- [1] Y Mao, et al. Hypo3D: Exploring Hypothetical Reasoning in 3D Under Reviewed by the International Conference on Machine Learning ICML, [GitHub] [Paper]
- [2] Y Mao, et al. OpenDlign: Open-World Point Cloud Understanding with Depth-Aligned Images
 Accepted by the Conference on Neural Information Processing Systems NeurIPS 2024, [GitHub] [Paper]
- [3] J Jing, Y Mao, et al. Match Stereo Videos via Bidirectional Alignment

 <u>Under Reviewed</u> by the IEEE Transactions on Pattern Analysis and Machine Intelligence TPAMI, [GitHub] [Paper]
- [4] J Jing, Y Mao, et al. Match-stereo-videos: Bidirectional alignment for consistent dynamic stereo matching Accepted by the European Conference on Computer Vision ECCV 2024, [GitHub] [Paper]
- [5] Y Mao, et al. Disc-diff: Disentangled conditional diffusion model for multi-contrast mri super-resolution Accepted by the Medical Image Computing and Computer Assisted Intervention MICCAI 2023, [GitHub] [Paper]
- [6] J Lan, Y Mao, et al. Cola-diff: Conditional latent diffusion model for multi-modal mri synthesis.
 Accepted by the Medical Image Computing and Computer Assisted Intervention MICCAI 2023, [GitHub] [Paper]
- [7] Y Mao, et al. Deep Domain Adaptation Enhances Amplification Curve Analysis for Single-Channel Multiplexing in Real-Time PCR

Accepted by the IEEE Journal of Biomedical and Health Informatics – IEEE JBHI, [Paper]

Work Experience

Research Assistant | Centre for Antimicrobial Optimisation | Imperial | UK

Sep 2023 - Present

- Self-supervised pretraining to learn robust representations from clinical and simulated PCR curves for target identification.
- Developed transfer learning methods to bridge domain gaps between digital PCR, qPCR, and LAMP machines.

Teaching Assistant | EEE Department | Imperial | UK

Sep 2023 - Present

- Courses: Deep Learning (Year 4), Machine Learning (Year 3), and Computer Vision (Year 4).
- Responsibilities: Grading exams and coursework, providing feedback, and giving tutorials.

Research Assistant | Brain Tumour Imaging Lab | Cambridge | UK

Oct 2022 - Sep 2023

- Developed DisC-Diff and CoLa-Diff, both of which were accepted at MICCAI 2023. These are pioneering diffusion models designed for multi-contrast brain MRI super-resolution and missing MRI sequence synthesis.

Teaching Assistant | Informatics Department | KCL | UK

Sep 2020 - June 2021

- <u>Courses:</u> Foundation of Computing 2 (Year 2), Robotics Group Project (Year 2).
- Responsibilities: Lab demonstration, marking coursework reports, and giving tutorials.

- Developed YOLOv3 for defect detection in construction images, achieving 87% mAP on cracks and rebar exposure.
- Implemented DeepLabV3+ for 3D BIM-based material classification, improving F1-score by over 20%.

Selected Projects

PhD Project 3: Exploring Hypothetical Reasoning in 3D

- Proposed hypothetical 3D reasoning (Hypo3D) task, which evaluates a model's ability to first imagine the current scene state after a context change and then perform reasoning.
- Created Hypo3D benchmark with 7,727 context changes and 14,885 question-answering pairs across 700 scenes. Results show a substantial performance gap between humans and vision-language models; work under review at ICML 2025.

PhD Project 2: Match Stereo Videos

- Proposed BidaStereo, which achieves robust dynamic stereo matching using a triple-frame correlation layer to align adjacent frames and a motion-propagation recurrent unit to exploit global information across the entire sequence.
- BidaStereo outperforms benchmarks in matching accuracy and temporal consistency; work published in ECCV 2024.

PhD Project 1: Open-World Point Cloud Understanding

- Introduced OpenDlign, a new Open-World 3D learning framework that enables robust 3D representation learning through multimodal alignment between multi-view depth maps and diffusion-generated images.
- OpenDlign outperforms previous methods in zero-shot and few-shot point cloud classification, 3D detection, and cross-modal retrieval, despite fine-tuning only 6 million parameters; work published in NeurIPS 2024.

MPhil Thesis: Brain MRI Super-Resolution using Conditional Diffusion Models

- Proposed Disc-Diff, a conditional diffusion model for multi-contrast brain MRI super-resolution. Enhanced by disentangled learning, DisC-Diff effectively captures complementary features from T1 and T2 MRI contrasts.
- DisC-Diff is the first study to explore the diffusion model for brain MRI super-resolution and was previous state-of-the-art; work published in MICCAI 2023.

Scholarships and Awards

Imperial President's PhD Scholarship – Top 50 college-wide; full tuition and £2X,XXX stipend.	2023 - 2027
Hertha Ayrton Centenary Prize – Highest final-year project grade, Imperial EEE Department.	2022
$\mathbf{AML\ Prize} - \mathrm{Highest\ overall\ grade\ in\ MSc\ Applied\ Machine\ Learning\ programme,\ Imperial\ College\ London.}$	2022
Dick Poortvliet Award – 1st Place, IEEE Region 8 Student Paper Contest (Imperial Branch).	
Peplow Prize – Highest final-year project grade, KCL Informatics Department.	
Robotics Prize – Highest overall grade in BSc Computer Science programme, King's College London.	

Reviewer Experience

ECCV 2024	MICCAI 2024, 2025	NeurIPS 2024	ICLR 2025
CVPR 2025	ICML 2025	IEEE Transactions on Medical Ima	ging

Skills

- Programming Languages: Experienced with Python (7+ years), C++, Java, Scala, Julia, MATLAB, R.
- Machine Learning and Computer Vision Libraries: Proficient in PyTorch (4+ years), TensorFlow, Keras, PyTorch3D, Open3D, Hugging Face Transformers, timm, scikit-learn, OpenCV, pandas, and NumPy.
- Operating Systems and Development Tools: Experienced in Linux, Windows, and macOS environments. Skilled in development tools such as Anaconda, Mamba, Visual Studio Code, Vim, Git/GitHub, Docker, Google Colab, and PyCharm.
- <u>Remote and Collaboration Tools</u>: Skilled in SSH, Linux Screen, TeamViewer, Remote Desktop, Microsoft Teams, Workplace, Zoom, and Slack for efficient remote collaboration and system management.
- Productivity and Documentation: Experienced with Google Docs, Microsoft OneNote/Excel/PowerPoint/Word, Overleaf.
- Languages: Native in Mandarin, fluent in English.

Interest

- Passionate about vocal performance, especially in R&B and Acapella music. Former choir member and band performer.
- Avid traveler who enjoys city walks, discovering cultural landmarks, and visiting museums and art galleries.